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This supplementary material contains the proof of convergence of the proposed test statistics.

Convergence of the Proposed Test Statistic

We can write the statistic in terms of stochastic process:

Q̂ψ = n−1∆̂
T

Kn∆̂ =

∫ ∫
k(x,x′)dΘ̂(x)dΘ̂(x′) (1)

where

Θ̂(x) = n−
1
2

n∑
i=1

(Yi − Ȳ1)I(Ti = 1)

π̂1
I(xi 6 x)− n−

1
2

n∑
i=1

(Yi − Ȳ0)I(Ti = 0)

π̂0
I(xi 6 x). (2)

To derive the influence function of Θ̂(x), we write the first part of Θ̂(x) in the following way:

n−
1
2

n∑
i=1

(Yi − Ȳ1)I(Ti = 1)

π̂1
I(Xi 6 x)

=n−
1
2

n∑
i=1

(Yi − µ1)I(Ti = 1)

π1

[
I(Xi 6 x)− n−1

n∑
i=1

I(Ti = 1)I(Xi 6 x)

]
+ oP (1)

=n−
1
2

n∑
i=1

(Yi − µ1)I(Ti = 1)

π1
[I(Xi 6 x)−F(x)] + oP (1)

where F(x) = P (Xi 6 x). Since by a uniform law of large numbers (ULLN) (Pollard, 1990),

n−1
∑n

i=1
I(Ti=1)I(Xi6x)

π1
converges in probability to its limit, F(x), uniformly in x. Therefore,

Θ̂(x) = n−
1
2

n∑
i=1

θi(x) + oP (1), (3)

where

θi =

[
(Yi − µ1)I(Ti = 1)

π1
− (Yi − µ0)I(Ti = 1)

π0

]
[I(Xi 6 x)−F(x)] (4)

It is not hard to show that E{θi(x)} = 0. In addition, it follows from a functional central limit

theorem (Pollard, 1990) that Θ̂(x) converges jointly to a zero mean Gaussian process G(x). By
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Lemma A.3 of Bilias et al. (1997) and the strong representation theorem, we have

(1)→
∫ ∫

k(x,x′)dG(x)dG(x′)
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